Robotics Research Lab

Unimog U5023

Description

The robot Unimog U5023 is a Mercedes Benz Special Trucks vehicle with high-level terrain mobility and many possible utilization areas. It is characterized by extreme off-road capability and features like differential locks, a central tire inflation system, a high number of gears, frame torsion, centerline torsion, and portal axle. Therefore, the applied research benefits from its ability to access rough terrain not included in the previous research programs. Accordingly, a research focus is on developing robust and secure commercial vehicles' navigation solutions in rough and unstructured terrain. Compared to on-road applications, off-road navigation is still an unsolved research problem with high technical barriers. Nevertheless, the legal regulations for autonomous commercial vehicles in unstructured terrain are typically less strict, and concepts commercialize more easily.

The Unimog's central research topics are the progress of robust perception systems, novel navigation methodologies in challenging environments, and the deployment of autonomous tooling in harsh or at least complex environments. Consequently, the vehicle's perception provides, for instance, detailed information about object detections, classifications, scene context, the evaluation of passages, plus obstacles. On top of that, there are biologically motivated methods for localization and general quality assessment of the sensor system. Especially in unstructured environments, a robot system is often influenced and disturbed by noisy and faulty sensor measurements.

Therefore, project partners and lab members extended a standard Unimog 5023 for autonomous deployment, including a new steering and braking system, computing capabilities, and sensor systems. Furthermore, a complex simulation of the Unimog was built, including all the vehicle's extras and characteristics. On account of this, it is possible to simulate risky maneuvers in heavy terrain before testing them in real life.

Images

Publications

Sort by: Author, Year, Title

  • Cognitive Processing in Behavior-Based Perception of Autonomous Off-Road Vehicles.
    Patrick Wolf
    (2022)
  • Disturbance Detection in LiDAR Data.
    Jannis Egelhof
    (2022)
  • Disturbance and Particle Detection in LiDAR Data.
    Jannis Egelhof, Patrick Wolf and Karsten Berns
    48th Annual Conference of the IEEE Industrial Electronics Society (IECON 2022), (2022)
  • Filtering of Laser Scanner Point Clouds Tainted by Rain or Snow.
    Christian Koort
    (2022)
  • Human-inspired cognitive processing for robust autonomous off-road driving.
    Patrick Wolf
    5th Young Reseachers Symposium 2022, S. 35. (2022)
  • Traction Control of Autonomous Off-road Vehicle using Semantic Segmentation and Offline-maps.
    Satish Thangellapally
    (2022)
  • Traction optimization for robust navigation in unstructured environments using deep neural networks on the example of the off-road truck Unimog.
    Patrick Wolf, Pankaj Deoli, Satish Thangellapally and Karsten Berns
    17th International Conference on Intelligent Autonomous Systems – IAS-17, S. 191 - 208. (2022)
  • Tree-Based Localization and Mapping in Rough Forest Environments for Autonomous Off-Road Vehicles.
    Christian Heupel
    (2022)
  • Autonome Navigation und Umfelderkennung eines Unimogs in unstrukturiertem Terrain.
    Patrick Wolf and Karsten Berns
    Tagungsband DWT-SGW Forum Unmanned Systems VIII, S. 30. (2021)
  • Autonomes Arbeiten mit dem Unimog. Umrüstung für Arbeitseinsätze im Katastrophenschutz, bei Feuerwehr, Forstwirtschaft, Weinbau und Deponie.
    Karsten Berns and Patrick Wolf
    CVC News, Vol. 2, S. 8 - 10. (2021)
  • Data-fusion for robust off-road perception considering data quality of uncertain sensors.
    Patrick Wolf and Karsten Berns
    IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), S. 6853 - 6860. (2021)
  • Towards effective Rock detection in Off-Road environments for Autonomous Navigation.
    Pankaj Deoli
    (2021)
  • Advanced scene aware navigation for the heavy duty off-road vehicle Unimog.
    Patrick Wolf, Axel Vierling, Thorsten Ropertz and Karsten Berns
    The 9th International Conference on Advanced Concepts in Mechanical Engineering – ACME 2020. IOP Conference Series, Vol. 997, S. 1 - 18. (2020)
    DOI: 10.1088/1757-899x/997/1/012093
  • Autonome Off-Road Navigation von Nutzfahrzeugen. Erfahrungsbericht und Testergebnisse des CVC-Leitprojekts zum autonomen Fahrbetrieb von Nutzfahrzeugen im Off-Road-Bereich.
    Karsten Berns, Patrick Wolf and Steffen Hemer
    CVC News, Vol. 1, S. 4 - 10. (2020)
  • Autonomous Off-Road Navigation using Near-Feature-Based World Knowledge Incorporation on the Example of Forest Path Detection.
    Patrick Wolf, Axel Vierling, Thorsten Ropertz, Simon Velden, Carlos Guzman and Karsten Berns
    Preprint submitted to Robotics and Autonomous Systems, (2020)
  • Wenn Autos fahren wie von Geisterhand. Off-Road-Bereich wird zur Herausforderung / Nutzen wäre aber enorm.
    Karsten Berns and Patrick Wolf
    KOMMUNALtopinform, Vol. 4, S. 62 - 63. (2020)
  • Behavior-Based Control for Safe and Robust Navigation of an Unimog in Off-Road Environments.
    Patrick Wolf, Thorsten Ropertz, Karsten Berns, Martin Thul, Peter Wetzel and Achim Vogt
    Commercial Vehicle Technology 2018. Proceedings of the 5th Commercial Vehicle Technology Symposium – CVT 2018, S. 63 - 76. (2018)
  • Behavior-Based Low-Level Control for (semi-) Autonomous Vehicles in Rough Terrain.
    Thorsten Ropertz, Patrick Wolf and Karsten Berns
    Proceedings of ISR 2018, S. 386 - 393. (2018)
  • Local Behavior-Based Navigation in Rough Off-Road Scenarios based on Vehicle Kinematics.
    Patrick Wolf, Thorsten Ropertz, Moritz Oswald and Karsten Berns
    2018 IEEE International Conference on Robotics and Automation (ICRA), S. 719 - 724. (2018)
    DOI: 10.1109/ICRA.2018.8460631
  • Modelling and Simulation of Behaviour-Based Differential and Slippage Control for Unimog.
    Ganesh Sundaram
    (2018)
  • Multi Feature Maps for Autonomous Off-Road Navigation in Rough Environments.
    Simon Velden
    (2018)
  • Ontologies for Situation-Aware, Autonomous Navigation in Challenging Off-Road Environments.
    Philipp Feldmann
    (2018)
  • Autonomie in unwegsamem Gelände. Aktuelle Zwischenergebnisse des CVC-Leitprojekts zum autonomen Fahrbetrieb von Nutzfahrzeugen im Off-Road Bereich.
    Karsten Berns and Patrick Wolf
    CVC News, Vol. 2, S. 8 - 11. (2017)
  • Behavior-Based Gear Control for Rough Off-Road Environments.
    Simon Velden
    (2017)
  • Behavior-Based Navigation for Stuck Vehicles in Rough Off-Road Environments.
    Matthias Kremer
    (2017)
  • Geländerekonstruktion basierend auf 3D-Punktwolken.
    Hannes Endres
    (2017)

 

Go to top