Registration of 3D Images
generated by an UAV

Viktor Leonhardt
Robotics Research Lab
Department of Computer Science
University of Kaiserslautern, Germany
July 29, 2015
Table of Contents

1 Introduction

2 6D SLAM
 ICP Matching
 Requirements

3 Recordings
 Dead Reckoning
 Point Cloud

4 Conclusion
Introduction

Mapping

Unmanned Aerial Vehicle (UAV)
6D SLAM

Features

- based on ICP
- octree based heuristic
- cached k-d tree
- captures pose in 6D

Iterative Closest Point Matching
Requirements

\[P_{n+1} = \Delta P_{best} \cdot \Delta P \cdot P_n \]

- Octree heuristic
- Odometry extrapolation
- Previous robot pose
Requirements

\[P_{n+1} = \underbrace{\Delta P_{\text{best}}} \cdot \underbrace{\Delta P}_{\text{odometry extrapolation}} \cdot \underbrace{P_n}_{\text{previous robot pose}} \]

- octree heuristic
- odometry extrapolation
- previous robot pose
Dead Reckoning

Intrinsic- vs. GPS-pose
Dead Reckoning

 Recorded depth map using the UAV
Conclusion

- Odometry
- GPS
- Point Cloud

6D SLAM

Recordings

Introduction

Conclusion
References

- 3D Scan Repository, "http://slam6d.sourceforge.net/".