Robotic Platform for Testing Autonomous Emergency Braking in Vehicles

Syed Atif Mehdi
Location in the world
The Team

Dr.-Ing. Syed Atif Mehdi
Manager

Komal Sajid
Assistant Manager

Moneeb Ahsen
Control Systems Engineer

Sohaib Jaffar
Embedded Systems Engineer

Shadab Ahmad Khan
Test Engineer

Rabbia Asghar
Assistant Manager

Bilal Talat
Control Systems Engineer

Ammar Akhlaq
Control Systems Engineer

Rabeya Jamshad
Control Systems Engineer
New Car Assessment Program
PreScan Applications
AEB Pedestrian performance test

Euro NCAP consumer testing
Test Scenarios
Conventional Methods for Testing
The AVCASS
The **AVCASS** (Autonomous Vehicle for Certification of Active Safety Systems)
- an **ultra-low profile**,
- **overrun safe**
- for Pedestrians or Balloon cars
- **autonomous control**

Capabilities:
- Provides motion to the target dummy
- Able to withstand multiple over-runs at realistic test speeds
- Autonomous control and feedback
- High run time allowing uninterrupted testing
- Causes no damage to the test vehicle
AVCASS - Features

<table>
<thead>
<tr>
<th>AVCASS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Tracked drivetrain with dual motor control and independent suspension linkages</td>
</tr>
<tr>
<td>Weight</td>
<td>21.5 kg</td>
</tr>
<tr>
<td>Control System</td>
<td></td>
</tr>
<tr>
<td>Control Modes</td>
<td>Remote Control / Autonomous</td>
</tr>
<tr>
<td>Autonomous</td>
<td>Robust and Real time Control using feedback from encoders, GPS and IMU</td>
</tr>
<tr>
<td>Control Unit</td>
<td>SBC of 1066MHz ARM9 Processor Electronic Speed Controllers for motor control GPS receiver and IMU placed inside black box</td>
</tr>
<tr>
<td>Velocity</td>
<td>Up to 20 Km/h</td>
</tr>
<tr>
<td>Positional Accuracy</td>
<td>± 10 cm</td>
</tr>
<tr>
<td>Communication</td>
<td>Wifi communication with operator control unit</td>
</tr>
</tbody>
</table>
Design and Simulation Process:

- CATIA modules for Kinematics and Modeling
- ADAMS for dynamic simulations
- Mathematical modeling of drive-train of AVCASS
- ANSYS has also been used for structural analysis
- Control system design to operate the AVCASS
Salient Features of the AVCASS

- Low profile design and suspension with sloped protective top shell
- High maneuverability due to twin rubber tracks for power and steering
- Front caster wheels (single or double) with centering and damping system
- Autonomous control with inertial navigation and Differential GPS guidance
- Significant mechanical load bearing capacity; AVCASS is designed to withstand 500 over-runs
- Robust drivetrain and suspension designed to bear test vehicle loads during over run
AVCASS - Communication

ACU (AVCASS Control Unit)

RCU (Remote control unit)

DGPS Base Station

Host Vehicle
AVCASS - Control System

- GPS
- IMU
- Wireless Communication Module
- Operator Control Unit
- Processor
- ESC
- Motors
- Encoders

- Single Board Computer
- GPS with cm accuracy
- Inertial Measurement Unit (IMU)
- Operator Control Unit
Testing of AVCASS in Simulation at Various Speeds

Car moving at 5 km/h hits AVCASS

Car moving at 10 km/h hits AVCASS

Car moving at 50 km/h hits AVCASS

Car moving at 80 km/h hits AVCASS
Roof-Top Tests

- 4.75 km/h
- 6.3 km/h
- 7.9 km/h
AVCASS testing in Simulation

AVCASS hitting the car front at 25%

AVCASS hitting the car front at 50%

AVCASS hitting the car front at 75%
Applications in Commercial Vehicles
How Users Test AEB?
Thanks

Questions

Contact: Dr.-Ing Syed Atif Mehdi
amehdi@aedesign.com.pk